[Contribution from the Geophysical Laboratory, Carnegie Institution of Washington]

The System $\mathrm{NaPO}_{3}-\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7}-\mathrm{K}_{4} \mathrm{P}_{2} \mathrm{O}_{7}-\mathrm{KPO}_{3}$

By G. W. Morey, F. R. Boyd, Jr., J. L. England and W. T. Chen Received May 4, 1955

This is a study of the phase equilibrium relationships in that part of the ternary system $\mathrm{Na}_{2} \mathrm{O}-\mathrm{K}_{2} \mathrm{O}-\mathrm{P}_{2} \mathrm{O}_{5}$ included within the limits $\mathrm{NaPO}_{3}-\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7}-\mathrm{K}_{4} \mathrm{P}_{2} \mathrm{O}_{7}-\mathrm{KPO}_{3}$. The binary system $\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7} \mathrm{~K}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$ shows a complete series of solid solutions with a minimum melting point. All compositions on the join $\mathrm{Na}_{5} \mathrm{P}_{2} \mathrm{O}_{10}-\mathrm{K}_{5} \mathrm{P}_{3} \mathrm{O}_{10}$ melt incongruently, there probably is a compound of the composition $\mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10} \cdot \mathrm{~K}_{5} \mathrm{P}_{3} \mathrm{O}_{10}$, and there is extensive solid solution. The fields of these solid solution series have been determined, as well as those of the compounds $\mathrm{NaPO}_{3}, 3 \mathrm{NaPO}_{3} \cdot \mathrm{KPO}_{8}$ and KPO_{3}.

This is the final paper of a series from this Laboratory on the phase equilibrium relationships in alkali phosphate systems. ${ }^{1}$ It deals with that part of the ternary system $\mathrm{Na}_{2} \mathrm{O}-\mathrm{K}_{2} \mathrm{O}-\mathrm{P}_{2} \mathrm{O}_{5}$ included within the limits $\mathrm{NaPO}_{3}-\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7}-\mathrm{K}_{4} \mathrm{P}_{2} \mathrm{O}_{7}-$ KPO_{3}, and it was found most convenient to represent the system by means of a quadrilateral with these compounds as the corners and the argument mole fraction $\mathrm{K}_{2} \mathrm{O}$ and $\mathrm{P}_{2} \mathrm{O}_{5}$ (Fig. 1). The various preparations were made from two or three of the ingredients $\mathrm{NaPO}_{3}, \quad \mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7}, \mathrm{~K}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$ and KPO_{3} as given in Table I. Each of these ingredients was prepared by dehydration and fusion of the appropriate orthophosphate. All compositions given in the text are in the form $\left(\mathrm{Na}_{2} \mathrm{O}, \mathrm{K}_{2} \mathrm{O}, \mathrm{P}_{2} \mathrm{O}_{5}\right)$ in which the quantities are the mole fractions.

Experimental Methods

Melting points in this system were determined either by the quenching method, often described in papers from this Laboratory, ${ }^{2}$ or by the heating-curve method. The quenching method could be used with all mixtures on, and richer in $\mathrm{P}_{2} \mathrm{O}_{5}$ than, the join $\mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10}-\mathrm{K}_{5} \mathrm{P}_{3} \mathrm{O}_{10}$. Mixtures on and near this join, and mixtures rich in KPO_{3}, require or were given quenching in mercury; mixtures in which NaPO is the primary phase and mixtures near the ternary eutectic are easily obtained as glass by removal from the furnace.

Mixtures of pyrophosphates cannot be cooled to glass and required the less convenient heating-curve method. Melts in $25-\mathrm{ml}$. platinum crucibles were used with bare thermocouple wires, carefully centered, and readings taken every 30 seconds near the break on the heating curve. There was too much undercooling to permit the use of cooling curves.

Temperatures were measured with platinum-platinum 10% rhodium thermocouples used with a White potentiometer. The couples were calibrated at the melting point of zinc, ${ }^{3} 419.4^{\circ}$; $\mathrm{NaCl},{ }^{4} 800.4^{\circ}$; and gold, ${ }^{3} 1062.6^{\circ}$. Comparisons were frequently made with a thermocouple calibrated at the National Bureau of Standards in the International Temperature Scale of 1948 . This is practically identical with the Geophysical Laboratory Scale in the temperature range under consideration.

In general the crystalline phases were identified with the petrographic microscope, by the usual technique of determining the refractive indices of the crystals by immersion in oils of known refractive index. The X-ray method of crystal identification was frequently used, but near the liquidus the amount of crystalline material is usually too small for satisfactory X-ray work. Some short cuts were frequently used. KPO_{3} could be readily identified by its insolubility in water; $3 \mathrm{NaPO}_{3} \cdot \mathrm{KPO}_{3}$ dissolved more slowly than surrounding glass, leaving isolated crystals which all dissolved in a few minutes; NaPO_{3} and the tripolyphosphates vanished with the glass. Pyrophosphates could usually be distin-

[^0]

Fig. 1.-The system $\mathrm{NaPO}_{3}-\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7}-\mathrm{K}_{4} \mathrm{P}_{2} \mathrm{O}_{7}-\mathrm{K}_{\mathrm{PO}}^{3}$. This diagram may be regarded as a section of the triangular diagram $\mathrm{Na}_{2} \mathrm{O}-\mathrm{K}_{2} \mathrm{O}-\mathrm{P}_{2} \mathrm{O}_{5}$ in which the angle at the base is changed from that of an equilateral triangle to 90°. The field of pyrophosphate solid solutions extends to the boundary $\mathrm{N}_{2} \mathrm{ABK}_{2}$; that of $\mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10}$ is the area $\mathrm{N}_{1} \mathrm{~N}_{2} \mathrm{AD}$; that of $\mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10} \cdot \mathrm{~K}_{5} \mathrm{P}_{3} \mathrm{O}_{10}$, the area ABFED; that of $\mathrm{K}_{5} \mathrm{P}_{3} \mathrm{O}_{10}$, the area $\mathrm{FBK}_{2} \mathrm{~K}_{1}$; that of NaPO_{3}, the area $\mathrm{NaPO}_{3}-\mathrm{N}_{1} \mathrm{CM}$; that of $3 \mathrm{NaPO}_{3} \cdot \mathrm{KPO}_{3}$, the area MCEL; and that of KPO_{3} the area $\mathrm{KPO}_{3}-\mathrm{LEFK}_{1}$.
guished from tripolyphosphates by their forming rounded grains resembling fish roe.

X-Ray measurements were made by the Debye-Scherrer method on a North American Phillips diffractometer with copper $\mathrm{K} \alpha$ radiation and a nickel filter. The scanning was at 1° per minute and the recording at 2° per inch. The relative intensities are based on a scale of ten. Studies were made on both pyrophosphates and tripolyphospliates at high temperature in a high-temperature X-ray furnace, described by MacKenzie. ${ }^{5}$

The Binary System $\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7}-\mathrm{K}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$.-Mixtures in this limiting system cannot be quenched to glass, and all melting points were determined by the method of heating curves. The melting point of $\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$ is 989°, of $\mathrm{K}_{4} \mathrm{P}_{2} \mathrm{O}_{7} 1104^{\circ}$. The phase equilibrium results are given in no. 1-15 of Table I, and shown in the upper curve of Fig. 2. The melting point curve indicates that the two end members form a complete series of solid solutions with a minimum melting point, corresponding to Roozeboom's Type III. ${ }^{6}$

Under the microscope, preparations in this series characteristically show an excellent cleavage and polysynthetic twinning, which frequently assumes a crosshatched pattern. Measurements of the α and γ indices for a number of compositions are shown in Fig. 3. The 2V of intermediate compositions was checked by interference figures in
(5) W. S. MacKenzie, Am. J. Sci., Bowen Vol., 319 (1952).
(6) H. W. B. Roozeboom Z. physik. Chem., 30, 385 (1899).

Table I
Composition and Liquidus Data

\cdots	NaPO_{3}	$\underset{\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7}}{\mathrm{Wt}_{7}}$	ction に PO_{3}	$\mathrm{K}_{4} \mathrm{P}_{2} \mathrm{O}$	Na O	$\begin{gathered} \text { Mole fraction } \\ \mathrm{K}_{2} \mathrm{O} \end{gathered}$	Pa_{5}	$\text { II in }{ }_{\circ}$	Primary plase
1		0.8202		0.1798	0.567	0.10	0． 3833	930	Pyros．s．
2		． 7350		． 2650	． 562	． 15	． 333	906	Pyro s．s．
3		． 6526		． 3474	． 407	． 20	． 333	898	Pyro s．s．
4		． 6205		． 3795	． 447	． 22	． 333	891	Pyros．s．
5		． 6168		． 3832	． 4.45	222	． 33.3	890	Pyros．s．
6		． 5887		． 4113	427	24	． 333	890	Pyross．s．
7		5730		． 4270	417	$2{ }^{-1}$	． 33.35	89.4	Pyros．s．
3		5574		4426	． 387	2 K	． 333	889	Pyross．
9		4057		． 5040	． 307	．3）	．33：3	897	Pyros．s．
10		4461		． 5539	． 334	． 333	333	900	Pyros．s．
11		． 36.35		． 6365	277	． 39	． 33.3	920	Pyross．s．
12		． 3140		． 6860	$2+2$	． 475	．333	937	Pyro s．s．
13		． 2932		． 7068	227	44	． 38.3	951	Pyro s．s．
14		． 2900		． 7100	225	． 42	． 3833	95%	Pyro ss．
15		2983		． 8017	157	51	． 383	989	Pyros．s．
16		． 4064	0.1867	． 4009	． 31	． $3 \cdot 3$	． 30	825	Pyros．s．
17	0.2724	． $63.30 \cdot 4$		． 08.52	． 575	． 05	． 375	850	Pyros．s．
18	． 5990	． 2698		． 1312	（5）	．0－5	． 375	835	Pyross，
19		． 6925	．3075		． 51$)$	． 125	． 375	811	I＇yro s．s．
20	2635	4800，		2559	． 475	． 15	． 375	796	l＇yros．s．
21	． 2600	． 4353		． 3047	445	18	． 375	785	Pyros．s．
22	． 2582	． 3905		． 3513	415	． 21	． 375	774	Pyross．
23		． 4985	2987	． 2068	． 375	． 25	． 375	77）	Pyro s．s．
24	2505	． 2620		． 4875	． 325	． 30	． 975	748	Pyros．s．
25		． 4073	2882	． 3045	． 3125	． 3125	． 375	750	Pyro s．s．
26	2490	． 2316		． 5194	． 305	． 32	． 375	750）	Pyros．s．
27		． 3403	． 3751	． 2846	． 265	． 30	． 375	755	Pyros．s．
28		． 2633	2847	． 4520	208	． 417	． 375	7.79	Pyro 5.5
29		2187	． 2767	． 5046	175	4.5	． 375	802	Pyros．s．
30	2360			． 7940	． 125	． 50	． 375	850	Pyros．s．
31		． 0910	． 2685	． 6405	． 075	． 55	． 375	895	Pyros．s．
32		． 0541	． 2664	． 6795	． 045	． 58	． 375	925	Pyros．s．
33	2987	． 3770		． 3343	． 42	． 20	． 38	737	Pyros．s．
34	． 2841	． 3051		． 4108	． 37	． 25	． 38	750	Pyros．s．
85	． 3186	． 3485		． 3329	415	20	． 385	702	Pyros．s．
36	． 3086	5875		． 0439	． 585	． 025	． 39	752	Pyro s．s．
37	． 3657	． 5478		． 18805	．560	． 050	． 39	747	Pyros．s．
38	． 3027	． 5181		． 1295	． 2.35	． 075	． 39	728	Pyros．s．
39	． 3597	． 46,90		． 1713	． 510	． 100	． 39	720	Pyros．s．
40	2539	． 3932		． 2529	460	． 100	． 39	702	Pyros．s．
41		． 993		． 407	． 44	． 17	． 39	692	Pyros．s．
42	3478	32010		． $3: 310$.41	． 20	． 39	678	Pyros．s．
								632	Pyro s．s．+ NK
43	34.24	2497		． 4079	． 36	． 25	． 39	60\％）	Prros．s．
4.	． 3393	． 2155		． 4452	． 33.35	．275	． 39	660	Pyros．s．
45		.4009	． 3901	． 9 ）90	． 31	． 30	．39）	600	Prros．s．
								038	Pyros．s．+NK
40	． 3318	． 1148		． 5534	． 20	． 3.5	． 39	067	Pyros．s．
								642	Pyross．+ NK
47	． 3270	． 0502		． 0628	． 21	40	． 39	675	Pyro 5．s．
								042	Pyro s．s．+ NK
48	． 3229			． 6771	.17	． 44	． 39	099	Pyro s．s．
49		． 1339	． 3073	． 4988	． 11	． 50	． 39	750	Pyro s．s．
50		． 5384	． 4366	． 0250	． 405	20	． 395	852	Pyros．s．
								616	Pyross．+ NK
51		． 3929	． 4230	． 1841	． 305	． 30	． 395	635	入に
52		2502	4092	． 3346	． 205	． 40	． 395	637	Proos．s．
53	． 3523			． 6477	． 18.5	． 42	． 395	682	Pyros．s．
54		． 1273	． 3982	． 4745	． 105	． 50	． 395	717	Prosos．s．
55	4266	． 4809		0865	55	0.5	． 40	681	Proos．s．
56	4192	． 4108		． 1700	． 0	． 10	． 40	0.57	Pyros．s．
．7	.4125	． 3307		． 2508	． 45	． 1.5	.40	（4）3	Pyros．s．

Table I (Continued)									
No.	NaPO_{3}	$\begin{array}{r} \mathrm{Wt} \\ \mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O} \end{array}$	${ }^{\text {ion }} \mathrm{KO}_{3}$	$\mathrm{K}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$	Na 2 O	$\begin{gathered} \text { Mole fraction } \\ \mathrm{K}_{2} \mathrm{O} \end{gathered}$	$\mathrm{P}_{2} \mathrm{O}_{5}$	Liquidus,	Primary phase ${ }^{\text {a }}$
58		. 5296	. 4704		. 40	. 20	. 40	627	Pyro s.s.
								617	Pyro s.s. +NK
59	. 3996	. 1957		. 4047	. 35	. 25	. 40	630	Pyro s.s.
60	. 3932	. 1286		. 4782	. 30	. 30	. 40	636	NK
61	. 3876	. 0632		. 5492	. 25	. 35	. 40	636	NK
62	. 3818			. 6182	. 20	. 40	. 40	632	NK
63		. 1839	. 4350	. 3811	. 15	. 45	. 40	630	Pyro s.s.
64		. 1208	. 4290	. 4502	. 10	. 50	. 40	675	Pyro s.s.
65		. 0594	. 4231	. 5175	. 05	. 55	. 40	723	Pyro s.s.
66	. 1319	. 5109	. 3572		. 445	. 15	. 405	620	Pyro s.s.
								597	Pyro s.s. +NK
67		. 1144	. 4594	. 4262	. 095	. 50	. 405	646	Pyro s.s.
68	. 4111			. 5889	. 215	. 38	405	625	NK
69	.4907	4662		. 0431	. 565	. 025	. 41	629	Pyro s.s.
70	. 4786	. 3528		. 1686	. 49	. 10	. 41	613	Pyro s.s.
								599	Pyro s.s. $+\mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10}$
71	. 4711	. 2800		. 2489	. 44	. 15	. 41	595	NK
72	. 4629	. 2107		. 3264	. 39	. 20	. 41	605	NK
73		. 4680	. 5320		. 36	23	. 41	605	NK
74	. 4562	. 1423		. 4015	. 34	25	. 41	608	NK
75	. 4488	. 0767		. 4745	29	. 30	. 41	616	NK
76	. 4423	. 0125		. 5452	. 24	.35	. 41	617	NK
77		. 2341	. 5119	. 2540	. 19	. 40	. 41	613	NK
78		. 1700	. 5047	. 3253	. 14	. 45	. 41	612	NK
79		. 1077	. 4973	. 3950	. 09	. 50	. 41	610	NK
80		. 0473	. 4817	. 4710	. 04	. 55	. 41	661	Pyro s.s.
81	. 2993	. 4607	. 2400		. 485	. 10	. 415	592	$\mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10}$
82		. 0412	. 5112	. 4476	. 035	. 55	. 415	626	Pyro s.s.
83	. 0194	. 4107	. 5699		. 33	. 25	. 42	603	NK
84		. 4095	. 5905		. 32	. 26	. 42	599	NK
85		. 3541	. 5825	. 0634	. 30	. 30	. 42	605	NK
86	. 5008			. 4992	. 26	. 32	. 42	604	NK
87	. 1571		. 5576	. 2853	. 13	. 45	. 42	594	NK
88		. 0953	. 5478	. 3552	. 08	. 50	. 42	594	$N \mathrm{~K}$
89	. 5746	. 3408		. 0846	. 525	. 05	. 425	583	$\mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10}$
90	. 3600	. 4020	. 2380		. 475	. 10	. 425	574	$\mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10}$
91	. 3017	. 2986	. 2997		. 448	. 127	425	570	$\mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10}$
92	. 2531	. 3955	. 3514		. 425	. 15	. 425	568	NK
93	. 1492	. 3896	. 4612		. 375	. 20	. 425	581	NK
94	. 0487	. 3837	. 5676		. 325	. 25	. 425	587	NK
95	. 5308			. 4692	. 275	. 30	. 425	593	NK
96		. 2790	. 6053	. 1157	. 225	. 35	. 425	594	NK
97		. 2138	. 5964	. 1898	. 175	. 40	. 425	594	NK
98		. 1505	. 5877	. 2618	. 125	. 45	. 425	598	KPO_{3}
99		. 5793	. 0890	. 3317	. 075	. 50	. 425	591	KPO_{3}
100		. 0292	. 5709	. 3999	. 025	. 55	. 425	610	KPO_{3}
101		. 3522	. 6478		. 28	. 29	. 43	584	NK
102		. 2717	. 6360	. 0923	. 22	. 35	. 43	585	NK
103		. 2069	. 6270	. 1661	. 17	. 40	43	596	KPO_{3}
104		. 0828	. 6087	. 3085	. 07	. 50	43	615	KPO_{3}
105		. 0833	. 5270	. 3897	. 04	. 53	43	628	KPO_{3}
106		. 3337	. 6663		. 2667	. 30	. 4333	579	NK
107	. 0094	. 3249	. 6657		265	. 30	. 4.35	577	\cdots
108		. 3244	. 6756		. 26	. 305	. 435	576	NK
109		. 315	. 685		. 2533	. 31	. 4367	577	NK
110	. 5570	. 3234	. 1196		. 51	. 05	. 44	555	NK
111	. 4468	. 3180	. 2352		. 46	. 10	. 44	539	NK
112	. 3398	. 3128	. 3474		. 41	. 15	. 44	534	NK
113	. 2363	. 3080	. 4557		. 36	. 20	. 44	552	NK
114	. 6222			. 3778	. 32	. 24	. 44	554	$\cdots \mathrm{N}$
115	. 1353	. 3036	. 5611		. 31	. 25	. 44	567	NK
116	. 0388	. 2980		. 6632	. 26	. 30	44	563	KPO_{3}
117		. 297	. 703		. 24	. 32	44	578	KPO_{3}

Table I (Continued)

No.	NaPO_{3}	$\underset{\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{PO}_{7}}{\mathrm{Wt}}$	${ }^{\mathrm{tion}} \mathrm{KPO}_{3}$	$\mathrm{K}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$	Na 2 O	$\begin{aligned} & \text { Mole fraction } \\ & \mathrm{K}_{8} \mathrm{O} \end{aligned}$	$\mathrm{P}_{2} \mathrm{O}_{8}$	$\begin{aligned} & \text { Liquidus, } \\ & { }^{\circ} \mathrm{C} . \end{aligned}$		${ }_{\text {Primary }}$
118		2575	. 6966	. 0459	21	. 35	. 44	596	KPO_{3}	
119		1933	. 6865	. 1202	16	. 40	. 44	622	KPO ${ }_{\text {i }}$	
120	643			357	33	227	. 443	533	NK	
121	. 5037	2630	2333		45	10	. 45	517	$\cdots \mathrm{NaPO}$	
122	. 3398	. 2598	3004		. 42	13	. 45	518	NK	
123	. 3965	. 2589	3446		. 40	15	. 45	518	NK	
124	6836			. 3164	. 35	20	. 45	531	NK	
125	2417	. 2532	5051		. 325	225	. 45	528	NK	
126	. 1925	2507	5568		. 30	25	. 45	542	NK	
127	. 0950	2469	6581		. 25	. 30	. 45	581	KPO_{3}	
128		. 2433	7567		. 20	. 35	. 45	620	KPO_{3}	
129		. 1182	. 7345	.1473	. 10	. 45	. 45	682	KPO_{3}	
130		. 0583	. 7244	2173	. 05	50	45	703	KPO_{3}	
131	4614	2391	. 2995		. 416	130	. 454	515	.NK	
132	2455	2466	. 5079		. 32	225	455	527	NK	
133	. 7146			2854	. 365	18	455	514	3:1	
134	2199	. 2253	. 5548		. 295	25	. 455	557	KPO_{3}	
135	. 5599	2086	. 2315		. 44	10	. 46	533	NaPO_{3}	
136	. 4525	2057	. 3418		. 39	15	. 46	516	3:1	
137	. 7457			2543	. 38	16	. 46	511	3:1	
138	. 3489	2022	. 4489		. 34	. 20	. 46	513	3:1	
139	. 3018	. 1966	. 5016		. 315	225	. 46	533	KPO_{3}	
140	. 2478	1994	5528		. 29	25	. 46	562	KPO_{3}	
141	. 1506	1960	6 6̄34		. 21	30	. 46	596	KPO_{3}	
142		. 1916	8084		. 16	. 38	. 46	665	KPO_{3}	
143	. 7192	. 1865	. 0943		. 495	. 04	. 465	568	NaPO	
144	. 8085			. 1915	41	. 12	. 47	532	3:1	
145	5078	. 1529	3393		. 38	15	. 47	532	3:1	
146	4040	1506	4454		. 33	20	. 47	525	3:1	
147	3534	. 1492	4974		. 305	225	. 47	535	KPO_{3}	
148	8716			. 1284	44	. 06	48	573	NaPO	
149	5619	. 1013	. 3368		. 37	15	. 48	540	3:1	
150	. 5000	1000	4000		. 34	18	. 48	537	3:1	
151	4067	. 0995	4938		. 295	225	. 48	536	3:1	
152	2594	. 0968	. 6438		. 20	. 30	. 48	620	KPO_{3}	
$15 \cdot 3$. 0929	9071		. 08	44	. 48	739	KPO_{3}	
154	. 9003			. 0997	4535	. 062	4845	588	NaPO	
155	.7453	. 0613	. 1934		. 427	. 085	. 488	585	NaPO	
156	. 54	. 06	40		. 331	181	488	544	3:1	
157	. 45	05	50		. 28	23	49	545	KPO_{3}	

${ }^{a}$ Pyro s.s. indicates one of the series of solid solutions between $\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$ and $\mathrm{K}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$; NK indicates the connpound Na_{3} $\mathrm{P}_{3} \mathrm{O}_{1} \cdot \cdot \mathrm{~K}_{5} \mathrm{P}_{3} \mathrm{O}_{10}, 3: 1$ indicates the compound $3 \mathrm{NaPO}_{3} \cdot \mathrm{KPO}_{3}$.
the course of the measurement of refractive indices by the immersion method, and some measurements of 2 V were made with the universal stage. The 2 V in intermediate compositions showed a range of froml 0 to 25°. This much range can be found in any individual sample, and attempts to change the 2 V or twinning pattern by different heat treatments were unsuccessful. The big change in 2 V at the $\mathrm{K}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$-rich end of the system takes place closer to $\mathrm{K}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$ than $\left(\mathrm{K}_{4} \mathrm{P}_{2} \mathrm{O}_{7}\right)$) $_{4}\left(\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7}\right)_{6}$.

Although all compositions in the alkali pyrophosphate series appear to be one phase when examined under the nicroscope, it would be very difficult to interpret the refractive index plot shown in Fig. 3 on the assumption of a homogeneous solid solution unbroken by inversions. Attempts to clarity the problem by X-ray study at room temperature were abandoned, primarily because of the highly hygroscopic nature of the potassiumrich preparations. It was also found that, while small changes in the X-ray patterns of these pyrn-
phosphates could be produced by different thermal treatments, these changes were not always reproducible. Accordingly, a high-temperature X-ray study of the system was undertaken with the aid of the heating stage referred to above.
A series of compositions across the system were X -rayed at a temperature of $800^{\circ}, 80^{\circ}$ below the mininum on the liquidus. The X-ray patterns so obtained showed a progressive clange from Na_{4} $\mathrm{P}_{2} \mathrm{O}_{7}$ to $\mathrm{K}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$. The amount of this shift for nine compositions was determined with quartz as an internal standard. For each composition the 2θ of the line referred to in Fig. 4 as "A" was measured relative to the quartz 101 reflection. The values so obtained, converted to d spacings and corrected for the thermal expansion of the quart\%, are presented in Fig. 5. The plot shows no deviation from Vegard's law and proves that a completc solid solution exists between $\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$ and $\mathrm{K}_{4} \mathrm{PeO}_{7}$ in the vicinity of the liquidus. This solid solution does not, in this temperature range, appear to be

Fig. 2.-Liquidus temperatures for several series of mixtures of constant mole fraction $\mathrm{P}_{2} \mathrm{O}_{5}$.

Fig. 3.-Refractive indices, α and γ, of mixtures in the binary system $\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7}-\mathrm{K}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$.
complicated by polymorphic inversions. Attempts to index the patterns for $\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$ and $\mathrm{K}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$ taken at 800° and to identify the reflection used in Fig. 5 were not successful.

The heating stage has also been used to investigate polymorphic transitions in the end members of this system. The technique employed was first to run series of full patterns at different temperatures for both end members. A group of these patterns is reproduced in Fig. 4. These patterns

Fig. 4.-X-Ray patterns of pyrophosphates at several temperatures.

Fig. 5.-Change in 2θ with composition of solid solutions in the system $\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7}-\mathrm{K}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$.
sufficed to show up the different polymorphs and to rough out their temperature stability regions.

The spectrometer goniometer arm was then allowed to oscillate across a line which the previous investigation had shown to be present in one polymorphic form and not in an adjacent form. The stage was set to heat or cool across the inversion interval, and the temperature of appearance or disappearance of the key line was noted. Two polymorphic transitions in $\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$ were located in this manner. The inversion temperatures obtained are $410 \pm 10^{\circ}$ and $520 \pm 10^{\circ}$. These transitions are relatively rapid and reversible. Inversion temperatures obtained by cooling across the inversion intervals were, within the error of measurement, the same as those obtained by heating. The inversion temperatures so obtained are in agreement with the data obtained by Partridge, Hicks and Smith, ${ }^{7}$ altlough the multiplicity of inversions in $\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$ in the vicinity of 520° found by these authors was not observed in the present study.
High-temperature X -ray patterns of $\mathrm{K}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$ show only very slight changes between 350° and the liquidus. An attempt to explore these changes by the methods used with $\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$ did not yield conclusive results. An attempt was also made to locate the position of the solidus curve for Na_{4} $\mathrm{P}_{2} \mathrm{O}_{7}-\mathrm{K}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$ through use of the heating camera. The technique used was similar to that employed in the investigation of polymorphic transitions. The results, however, showed too great a scatter to be useful. The scatter was due largely to crystalmelt fractionation on the tilted heating stage.

Melt no. 16 ($0.31,0.33,0.36$) between the pyrophosphates and the tripolyphosphate compositions was made in the hope that it could be quenched, since it is near the low portion of the concave liquidus surface of the pyrophosphate solid solutions. However, even the tiniest quenches invariably crystallized. From the amount of sintering of the charge, it was inferred that the liquidus is $825 \pm 10^{\circ}$.
The Join $\mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10}-\mathrm{K}_{5} \mathrm{P}_{5} \mathrm{O}_{10}$. - The second section shown in Fig. 2 is the join $\mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10}-\mathrm{K}_{5} \mathrm{P}_{3} \mathrm{O}_{10}$, which has a constant $\mathrm{P}_{2} \mathrm{O}_{5}$ mole fraction of 0.375 . The liquidus results are in Table I , no. 17-32. The primary phase in all mixtures of $\mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10}$ and $\mathrm{K}_{5} \mathrm{P}_{3} \mathrm{O}_{10}$ is a pyrophosphate solid solution; the solidus surface coördinated with the liquidus surface was not determined. Quenches wholly free from crystals, as observed under the petrographic microscope, can be obtained only by rapid quenching in mercury.

It was difficult to prove whether or not a compound is formed along the tripolyphosphate join $\mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10}-\mathrm{K}_{5} \mathrm{P}_{3} \mathrm{O}_{10}$. In the usual case this can be established by the shape of the melting point curve, but that is not possible here because of the incongruent melting of the tripolyphosphates. The shape of the melting point curves along the lines of constant $\mathrm{P}_{2} \mathrm{O}_{5}$ content, $0.40,0.41$ and 0.425 , of Fig. 2, make it probable that there is a compound intermediate between the two end members, and a similar conclusion is indicated by the shape of the boundary curves between the pyrophospliate
(7) E. P. Partridge, V. Hicke and G. W. Smitlt, This Itrifnal, 63, 454 (1941).
and the tripolyphosphate fields in Fig. 9. In all of these the composition is far removed from the tripolyphosphate join, and the broad flat maximum on the middle portion of these curves is indicative of a strongly dissociating compound of the probable composition $\mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10} \cdot \mathrm{~K}_{5} \mathrm{P}_{3} \mathrm{O}_{10}$. X-Ray patterns were made of a series of compositions along this join, which had been heat-treated at $500-550^{\circ}$ for from 4 to 6 weeks. These patterns are assembled in Fig. 6. They indicate extensive solid solution, which may be of Roozeboom's Type II.
$\mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10}$ has two crystalline modifications, but the conditions for their formation are not clear. The low-temperature ${ }^{7}$ form, II, is obtained when a inelt is cooled slowly to about 550° and removed from the furnace, after which the melt frequently spontaneously disintegrates, as it approaches room temperature, into a powder of $\mathrm{Na}_{\mathrm{a}} \mathrm{P}_{3} \mathrm{O}_{10}$ (II). This form can be prepared by heating $\mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10}$. $6 \mathrm{H}_{2} \mathrm{O}$ at 350°, but the product is not as well crystallized as that obtained by spontancous inversion. Attempts to fix a transition temperature $I \rightleftarrows$ I failed. When form II was heated with water in a pressure vessel at temperatures $11 p$ to 400° and 750 p.s.i. pyrophosphate was forned. The transition II \rightarrow I takes place quickly at 535°, slowly at 500°, in one week at 438° and not in 5 weeks at 380°. In these experiments the two forms were placed side by side, but in no case did form I change to II. We have not been able to change I to II by any treatment except the spontancous change on cooling described above.

Sections of Constant $\mathrm{P}_{2} \mathrm{O}_{5}$ Content.-The next sections shown in Fig. 2 are those with a constant $\mathrm{P}_{2} \mathrm{O}_{5}$ content of $0.39,0.40,0.41,0.425 \mathrm{~mole}$ fraction. All mixtures containing $0.39 \mathrm{P}_{2} \mathrm{O}_{5}$ have a pyrophosphate solid solution as primary solicl phase, and the minimum liquidus temperature, 660°, is well above the boundary between the fields of pyrosphosphate solid solution and the tripolyphosphates. The section containing $0.40 \quad \mathrm{P}_{2} \mathrm{O}_{5}$, however, cuts the surface of tripolyphosphate. At each end of the section pyrophosphate is the primary phase, but the central part, fron1 about 0.25 to $0.40 \mathrm{~K}_{2} \mathrm{O}$, cuts the melting surface of $\mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10} \cdot \mathrm{~K}_{5} \mathrm{P}_{3} \mathrm{O}_{10}$. The same is true of the section with $0.41 \mathrm{P}_{2} \mathrm{O}_{5}$. The section with $0.425 \mathrm{P}_{2} \mathrm{O}_{5}$ cuts first the surface of $\mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10}$, then the surface of $\mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10} \cdot \mathrm{~K}_{5} \mathrm{P}_{3} \mathrm{O}_{10}$, then of KPO_{3}, then of $\mathrm{K}_{5} \mathrm{P}_{3} \mathrm{O}_{10}$. Sections of greater $\mathrm{P}_{2} \mathrm{O}_{5}$ content are not included in the figure because of the confusion they would cause owing to the increase in temperature from the binary eutectics to the melting points of $\mathrm{KPO}_{\text {, }}$ or NaPO_{3}.

Sections of Constant $\mathrm{K}_{2} \mathrm{O}$ Content.-Sections through the diagran at constant $\mathrm{K}_{2} \mathrm{O}$ content were depended on for working out the positions of the isotherms and field boundaries. The curve for mole fraction $\mathrm{K}_{2} \mathrm{O}=0.30$ is given in Fig. 7. The melting point curve in the pyrophosphate field is steep, and the intersection with the tripolyphosphate curve at $(0.307,0.30,0.393)$ and 637° is easily fixed. The crystalline phase in melt no. 45 (0.31, $0.30,0.39)$ at its liquidus $\left(660^{\circ}\right)$ is a pyrophosphate solid solution. It 639° and at 633° the crystalline

Fig. 6.-X-Ray patterns of some tripolyphosphates.
phase is $\mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10} \cdot \mathrm{~K}_{5} \mathrm{P}_{3} \mathrm{O}_{10}$ and gives the same X -ray patterns as no. $24(0.325,0.30,0.375)$ at 550° and are below the metastable prolongation of the surface of $\mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10} \cdot \mathrm{~K}_{5} \mathrm{P}_{3} \mathrm{O}_{10}$ underneath the stable surface of the pyrophosphate solid solutions. Melt no. $51(0.305,0.30,0.395)$ has $\mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10} \cdot \mathrm{~K}_{5} \mathrm{P}_{3} \mathrm{O}_{10}$ as primary phase, liquidus 635°, and the intersection of the pyrophosphate and tripolyphosphate curves fixes the boundary between the fields as ($0.307,0.30,0.393$) and 637°. The curve then falls to its intersection with the field of KPO_{3}, at $(0.261,0.30,0.439)$ and 568°, then rises to the

Fig. 7.-Melting points of mixtures containing 0.30 mole fraction $\mathrm{K}_{2} \mathrm{O}$.
melting point of the mixture on the side $\mathrm{NaPO}_{3}-$ KPO_{3} containing 0.30 mole fraction $\mathrm{K}_{2} \mathrm{O}$.

Similar curves for the mixtures containing 0.20 mole fraction $\mathrm{K}_{2} \mathrm{O}$ are given in Fig. 8. The intersection of the pyrophosphate and the tripolyphosphate curves is between no. 58 ($0.40,0.20,40$), liquidus 627°, and no. 124 ($35,0.20,45$), liquidus 531°. The curve for $\mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10} \cdot \mathrm{~K}_{5} \mathrm{P}_{3} \mathrm{O}_{10}$ falls to its intersection with the field of $3 \mathrm{NaPO}_{3} \cdot \mathrm{KPO}_{3}$, at ($0.341,0.20,0.459$) and 513°, close to the low

Fig. 8.-Melting points of mixtures containing 0.24) mole fraction $\mathrm{K}_{2} \mathrm{O}$.
eutectic at E . It then crosses the field of $3 \mathrm{NaPO}_{3}$. KPO_{3} to the side $\mathrm{NaPO}_{3}-\mathrm{KPO}_{3}$. Similar curves were constructed for mixtures containing 0.10 , $0.15,0.25,0.35,0.40,0.45$ and 0.50 mole fractions $\mathrm{K}_{2} \mathrm{O}$ and used for the interpolation of the isotherms of Fig. 1.

The Boundary Curves.-The boundary between the fields of the pyrophosphate solid solutions and the tripolyphosphate compounds (Fig. 9) joins the compositions of the liquids at the binary reaction points

$$
\begin{gathered}
\mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10}=\mathrm{Na}_{4} \mathrm{P}_{3} \mathrm{O}_{7}+L \\
L=(0.588,0,0.412), t=622^{\circ}
\end{gathered}
$$

and

$$
\begin{gathered}
\mathrm{K}_{5} \mathrm{P}_{3} \mathrm{O}_{10}=\mathrm{K}_{4} \mathrm{P}_{2} \mathrm{O}_{7}+L \\
L=(0,0.58,0.42), t=6.41 .5^{\circ}
\end{gathered}
$$

The points on this boundary were deterninined on the lines of constant $\mathrm{K}_{2} \mathrm{O}$ content, such as that already discussed for 0.20 and $0.30 \mathrm{~K}_{2} \mathrm{O}$ (Figs. 7 and 8). The position of this boundary is given in the composition diagram of Fig. 1, and its temperature as a function of the $\mathrm{K}_{2} \mathrm{O}$ content is given in Fig. 9. The temperature falls rapidly on addition of $\mathrm{K}_{2} \mathrm{O}$ to the quadruple point A
$\mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10}+\mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10} \cdot \mathrm{~K}_{3} \mathrm{P}_{\cdot} \mathrm{O}_{10} \longrightarrow$ pyrophosphate $+L$

$$
L=(0.459,0.13,0.411), t=590^{\circ}
$$

Fig. 9.-The boundary curves between the fields of pyrophosphate solid solutions and the tripolyphosphates, and between the fields of the tripolypliosphates and the threc metaphosphate compounds.

The pyrophosphate is one of the solid solution series, and each of the tripolyphosphates shows solid solution. From A, the boundary temperature increases, and the tripolyphosphate field boundary in Fig. 1 is curved to lower $\mathrm{P}_{2} \mathrm{O}_{5}$ contents, reaching its minimum $\mathrm{P}_{2} \mathrm{O}_{5}$ content at about the $1: 1 \mathrm{Na}_{2} \mathrm{O}$: $\mathrm{K}_{2} \mathrm{O}$ ratio. The maximum temperature on the boundary in Fig. 9 is in about the same region, but this maximum is broad and flat. The boundary
curve then goes to a higher $\mathrm{P}_{2} \mathrm{O}_{5}$ content and lower temperature at the reaction point B

$$
\begin{gathered}
\mathrm{Na}_{3} \mathrm{P}_{3} \mathrm{O}_{10} \cdot \mathrm{~K}_{\mathrm{j}} \mathrm{P}_{3} \mathrm{O}_{11}+\mathrm{K}_{3} \mathrm{P}_{3} \mathrm{O}_{10} \underset{\text { pyropllosphate }}{\longrightarrow} L \\
L=(0.09,0.51), 0.41), t=619^{\circ}
\end{gathered}
$$

where again the crystalline phases are solid solutions. The boundary curve then rises to the binary reaction point on the side $\mathrm{K}_{4} \mathrm{P}_{2} \mathrm{O}_{7}-\mathrm{KPO}_{3}$.

The boundary between the field of the tripolyphosphates and the fields of the three metaplosphates, $\mathrm{NaPO}_{3}, 3 \mathrm{NaPO}_{3} \mathrm{~K} \cdot \mathrm{PO}_{3}$ and KPO_{3} (Fig. 9), was located by the appropriate intersections of the several curves of constant $\mathrm{K}_{2} \mathrm{O}$ content. The boundary starts at the eutectic in the binary system $\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7}-\mathrm{NaPO}_{3}$, where the reaction is

$$
\begin{aligned}
& \mathrm{Na}_{5} \mathrm{P}_{5} \mathrm{O}_{3}+\mathrm{Na}_{4} \mathrm{PO}_{5}=L \\
& L=(0.5 \overline{7}, 10,(0,+43), t=0510
\end{aligned}
$$

then goes to the ternary reaction point C

$$
\begin{gathered}
\mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10}+3 \mathrm{NaPO}_{3} \cdot \mathrm{KPO}_{3} \longrightarrow \mathrm{Nal}^{2} \mathrm{O}_{3}+L \\
L=(0.44 \overline{5}, 105,0.45), t=517^{\circ}
\end{gathered}
$$

The boundary curve then goes to the invariant point D

$$
\begin{gathered}
\mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10}+\lambda \mathrm{a}_{5} \mathrm{P}_{\mathrm{i}} \mathrm{O}_{10} \cdot \mathrm{~K}_{5} \mathrm{P}_{3} \mathrm{O}_{11}+3 \mathrm{NaPO}_{i} \cdot \mathrm{KPPO}_{3}=L \\
L=(0.418,0.13,452), t=510^{\circ}
\end{gathered}
$$

This must be a cutectic, since the composition of the liquid lies inside the triangle formed by three solid phases (Fig. 1). This triangle probably is narrow because of solid solution in the tripolyphosphate phases, and there is little discontinuity in the curve at D.

Fronn this eutectic the boundary curve must rise slightly in temperature, then fall to the ternary eutectic E

$$
\begin{gathered}
\lambda \mathrm{a}_{5} \mathrm{P}_{\hat{3}} \mathrm{O}_{10} \cdot \mathrm{~K}_{\dot{j}} \mathrm{P}_{5} \mathrm{O}_{10}+\mathrm{KPO}_{3}+3 \mathrm{NaPO}_{3} \cdot \mathrm{KPO}_{3} \rightleftarrows L \\
L=(0.33,0.21,0.46), t=512^{\circ}
\end{gathered}
$$

The boundary then beconnes that between the fields of $\mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10} \cdot \mathrm{~K}_{5} \mathrm{P}_{3} \mathrm{O}_{10}$ and KPO_{3}, which ends at the eutectic F

$$
\begin{gathered}
\mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10} \cdot \mathrm{~K}_{\dot{j}} \mathrm{P}_{\dot{j}} \mathrm{O}_{10}+\mathrm{K}_{j} \mathrm{P}_{3 j} \mathrm{O}_{10}+\mathrm{KPO}_{3}=L \\
L=\left(0.077,(0.50,0.423), t=589^{\circ}\right.
\end{gathered}
$$

The boundary then goes to the cutectic in the binary systenn $\mathrm{K}_{5} \mathrm{P}_{3} \mathrm{O}_{10}-\mathrm{KPO}_{3}$, where the reaction is

$$
\begin{gathered}
\mathrm{K}_{5} \mathrm{P}_{3} \mathrm{O}_{10}+\mathrm{KPO}_{3}^{2}=L \\
L=(0,0.571,0 .+29), t=613^{\circ}
\end{gathered}
$$

Another curve that goes from the ternary entectic, E , is the boundary between the fields of KPO_{3} and $3 \mathrm{NaPO}_{3} \cdot \mathrm{KPO}_{3}$, which ends at the eutectic in the binary system $\mathrm{NaPO}_{3}-\mathrm{KPO}_{3}$ at 547°. Herc the reaction is

$$
3 \mathrm{KaPO} \cdot \mathrm{KPO}_{3}+\mathrm{KPO}_{4}=\mathrm{L}
$$

and the connposition of the liquid is 0.505 weight fraction KPO_{3}, or $(0.266,0.234,0.500)$. Similarly, the boundary between the fields of $3 \mathrm{NaPO}_{3} \cdot \mathrm{KPO}_{3}$ and NaPO_{3} goes fron the ternary reaction print, C , to the incongruent meltisg point of $3 . \mathrm{NaPO}$: KPO_{3} at 552°, where the reaction $3 \mathrm{NaPO}_{3} \cdot \mathrm{KPO}_{3} \rightleftarrows$ $\mathrm{NaPO}_{3}+L$ takes place. The composition of the liquid is 0.31 weight fraction KPO_{3}, or $(0.36$, $0.14,0.500$).

The Solid Model.-Figure 1 is the completerl phase equilibriun diagram. It is a projection on
the basal plane of a prism having temperature as its vertical axis and consisting of a number of intersecting surfaces. The pyrophosphate solid solution surface is concave upward with its minimum a broad valley and sides of decreasing slope as the $\mathrm{P}_{2} \mathrm{O}_{5}$ content is increased. It intersects the tripolyphosphate surface; first the surface of the $\mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10}$ solid solution series, then the surface of $\mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10} \cdot \mathrm{~K}_{5} \mathrm{P}_{3} \mathrm{O}_{10}$, which is convex upward, as is shown by the curves of constant $\mathrm{P}_{2} \mathrm{O}_{5}$ content of $0.40,0.41$ and $0.425 \mathrm{P}_{2} \mathrm{O}_{5}$, of Fig. 2, then the surface of $\mathrm{K}_{5} \mathrm{P}_{3} \mathrm{O}_{10}$. The change in temperature of the intersection with $\mathrm{K}_{2} \mathrm{O}$ content is shown in Fig. 9, and the locus of compositions is indicated in Fig. 1.

The melting surface of KPO_{3} sweeps down to its
intersection on the one side with the surfaces of the tripolyphosphates and on the other side with the melting surface of the compound $3 \mathrm{NaPO}_{3} \cdot \mathrm{KPO}_{3}$, which come together at the ternary eutectic, E. The melting surface of $3 \mathrm{NaPO}_{3} \cdot \mathrm{KPO}_{3}$ has a comparatively small temperature gradient, and intersects the surface for NaPO_{3} from the incongruent melting point of $3 \mathrm{NaPO}_{3} \cdot \mathrm{KPO}_{3}$ on the side $\mathrm{NaPO}_{3}-$ KPO_{3} at 552° to the reaction point C at 517°, then intersects the surface of tripolyphosphate solid solutions from the reaction point C to the eutectic, E. The surface of NaPO_{3} intersects the surfaces of $3 \mathrm{NaPO}_{3} \cdot \mathrm{KPO}_{3}$ and $\mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10}$, and reaches its mininum temperature at the reaction point, C .
Washington, D. C.

NOTES

Phototropic Behavior of 4 - p-Dimethylaminoben-zeneazo)-phenylmercuric Acetate

By M. G. Horowitz ${ }^{1}$ and I. M. Klotz Received May 18, 1955
In the course of investigations of the interaction of proteins with azomercurials, it was observed that exposure of the dye 4 -(p-dimethylaminobenzene-azo)-phenylmercuric acetate, dissolved in certain organic solvents, to light led to a drop in the absorption of light in the region of $420 \mathrm{~m} \mu$. The absorption could be restored to its original value if the dye solution were stored in the dark. This light effect appeared to be similar to the photo-induced trans-cis isomerization which has been observed ${ }^{2-5}$ with other azo dyes. The isomerization reaction in the dark was studied as a function of solvent and time, since the results have a bearing on the configuration of the azomercurial in aqueous solution.

Experimental

4-(p-Dimethylaminobenzeneazo)-phenylmercuric acetate was prepared by a modification of the method of Jacobs and Heidelberger. ${ }^{6}$ The absorption spectrum of the dye was determined with a solution which had been stored in the dark overnight and also with a solution which was exposed to light before each reading. The solvents used were commercial preparations.

Optical measurements were made with the Beckman spectrophotometer, Model DU.
The rate of the cis-trans transformation was determined with a sample of the dye which had been dissolved in NN'dimethylformamide (or pyridine) and exposed to illumination until the absorption at $420 \mathrm{~m} \mu$ was at the minimum value
(1) Fellow of the National Foundation for Infantile Paralysis, 1952-1954.
(2) G. S. Hartley. Naiure, 140, 281 (1937).
(3) G. S. Hartley, J. Chem. Soc., 633 (1938)
(4) W. R. Brode. J. H. Gould and G. M. Wyman, This Journal, 74, 4641 (1952).
(5) W. R. Brode, J. H. Gould and G. M. Wyman, ibid., 76, 1856 (1953).
(6) W. A. Jacobs and M. Heidelberger, J. Biol. Chem., 20, 513 (1915).
which could be obtained with the available light intensity. The solution was then placed in the cell compartment of the spectrophotometer where it was protected from extraneous light. The increase in the optical density readings at $420 \mathrm{~m} \mu$ was recorded at intervals. The temperature at which the reaction proceeded was controlled by water circulating from a thermostated bath through the jacket surrounding the cell compartment.
If x is the optical density at $420 \mathrm{~m} \mu$ when the dye is all in the trans-form, y the lowest reading which can be obtained at $420 \mathrm{~m} \mu$ after exposure of the solution to light, and z the reading of the solution at $420 \mathrm{~m} \mu$ at any given time, then c_{0} the initial concentration of the cis-dye is proportional to ($x-y$) and c, the concentration of the cis-isomer at any given time, t, is proportional to $(x-z)$. Initial concentration of the cis-form is taken as the concentration at the moment when the solution is cut off from light.

Results and Discussion

The absorption spectrum of 4 -(p-dimethylamino-benzeneazo)-phenylmercuric acetate dissolved in dimethylformamide is shown in Fig. 1. The spectrum of the solution maintained in the dark shows

Fig, 1.-Spectrum of a $6.3 \times 10^{-6} M$ solution of $4-(p$ -dimethylaminobenzeneazo)-phenylmercuric acetate in $\mathrm{N}, \mathrm{N}^{\prime}$. dimethylformamide: trans-form, O ; steady state mixture of cis- and trans-forms after exposure to light,

[^0]: (1) E. Ingerson and G. W. Morey, Am. Min. 28, 448 (1943); G. W. Morey and E. Ingerson, Am. J. Sci., 242, 1 (1944); G. W. Morey, This Journal, 74, 5783 (1952); 75, 5794 (1053); 76, 4724 (1954).
 (2) E. S. Shepherd and G. A. Rankin, Am. J. Sci.. 28, 308 (1009); G. W. Morey, "The Properties of Glass," Second Edition, Reinhold Publ. Corp.. New York, N. Y., 1954, p. 32.
 (3) L. H. Adams, This Journal., 36, 65 (1914).
 (4) H. S. Roberts, Phys. Rev., 23, 386 (1929).

